Cerebral microvascular dilation during hypotension and decreased oxygen tension: a role for nNOS.
نویسندگان
چکیده
Endothelial (eNOS) and neuronal nitric oxide synthase (nNOS) are implicated as important contributors to cerebral vascular regulation through nitric oxide (NO). However, direct in vivo measurements of NO in the brain have not been used to dissect their relative roles, particularly as related to oxygenation of brain tissue. We found that, in vivo, rat cerebral arterioles had increased NO concentration ([NO]) and diameter at reduced periarteriolar oxygen tension (Po(2)) when either bath oxygen tension or arterial pressure was decreased. Using these protocols with highly selective blockade of nNOS, we tested the hypothesis that brain tissue nNOS could donate NO to the arterioles at rest and during periods of reduced perivascular oxygen tension, such as during hypotension or reduced local availability of oxygen. The decline in periarteriolar Po(2) by bath manipulation increased [NO] and vessel diameter comparable with responses at similarly decreased Po(2) during hypotension. To determine whether the nNOS provided much of the vascular wall NO, nNOS was locally suppressed with the highly selective inhibitor N-(4S)-(4-amino-5-[aminoethyl]aminopentyl)-N'-nitroguanidine. After blockade, resting [NO], Po(2), and diameters decreased, and the increase in [NO] during reduced Po(2) or hypotension was completely absent. However, flow-mediated dilation during occlusion of a collateral arteriole did remain intact after nNOS blockade and the vessel wall [NO] increased to approximately 80% of normal. Therefore, nNOS predominantly increased NO during decreased periarteriolar oxygen tension, such as that during hypotension, but eNOS was the dominant source of NO for flow shear mechanisms.
منابع مشابه
Cerebral microvascular nNOS responds to lowered oxygen tension through a bumetanide-sensitive cotransporter and sodium-calcium exchanger.
Na(+) cotransporters have a substantial role in neuronal damage during brain hypoxia. We proposed these cotransporters have beneficial roles in oxygen-sensing mechanisms that increase periarteriolar nitric oxide (NO) concentration ([NO]) during mild to moderate oxygen deprivation. Our prior studies have shown that cerebral neuronal NO synthase (nNOS) is essential for [NO] responses to decreased...
متن کاملSepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis.
OBJECTIVE Alterations in cerebral microvascular blood flow may develop during sepsis, but the consequences of these abnormalities on tissue oxygenation and metabolism are not well defined. We studied the evolution of microvascular blood flow, brain oxygen tension (PbO2), and metabolism in a clinically relevant animal model of septic shock. DESIGN Prospective randomized animal study. SETTING...
متن کاملPostischemic cerebral microvascular responses to norepinephrine and hypotension in newborn pigs.
We examined the effects of 20 minutes' cerebral ischemia on cerebral microcirculatory responses to topical norepinephrine and systemic hypotension in three groups (sham-operated control, 2-3 hours postischemia, and 24 hours postischemia) of anesthetized newborn pigs equipped with closed cranial windows. Cerebral ischemia may eliminate the prostanoid vasodilator system from the cerebral circulat...
متن کاملHemodilutional anemia is associated with increased cerebral neuronal nitric oxide synthase gene expression.
Severe hemodilutional anemia may reduce cerebral oxygen delivery, resulting in cerebral tissue hypoxia. Increased nitric oxide synthase (NOS) expression has been identified following cerebral hypoxia and may contribute to the compensatory increase in cerebral blood flow (CBF) observed after hypoxia and anemia. However, changes in cerebral NOS gene expression have not been reported after acute a...
متن کاملCerebrovascular dynamics of autoregulation and hypoperfusion. An MRI study of CBF and changes in total and microvascular cerebral blood volume during hemorrhagic hypotension.
BACKGROUND AND PURPOSE To determine how cerebral blood flow (CBF), total and microvascular cerebral blood volume (CBV), and blood oxygenation level-dependent (BOLD) contrast change during autoregulation and hypotension using hemodynamic MRI. METHODS Using arterial spin labeling and steady-state susceptibility contrast, we measured CBF and changes in both total and microvascular CBV during hem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 293 4 شماره
صفحات -
تاریخ انتشار 2007